

Node Architecture

- Wireless sensor nodes are the essential building blocks in a wireless sensor network
 - sensing, processing, and communication
 - stores and executes the communication protocols as well as data processing algorithms
- The node consists of sensing, processing, communication, and power subsystems
 - trade-off between flexibility and efficiency both in terms of energy and performance

Ine s	ensing su	ubsystem integrates	3
Sensor	Application Area	Sensed Event	Explanation
Accelerometer	AVM	2D and 3D acceleration of movements of people and objects	Volcano activities
	SHM		Stiffness of a structure
	Health care		Stiffness of bones, limbs, joints; Motor fluctuation in Parkinson's disease
	Transportation		Irregularities in rail, axle box or wheels of a train system
	SCM		Defect of fragile objects during transportatio
Acoustic emission sensor	SHM	Elastic waves generated by the energy released during crack propagation	Measures micro-structural changes or displacements
Acoustic sensor	Transportation & Pipelines	Acoustic pressure vibration	Vehicle detection; Measure structural irregularities; Gas contamination
Capacitance sensor	PA	Solute concentration	Measure the water content of a soil

Sensor	Application Area	Sensed Event	Explanation
ECG	Health care	Heart rate	
EEG		Brain electrical activity	
EMG		Muscle activity	
Electrical sensors	PA	Electrical capacitance or inductance affected by the composition of tested soil	Measure of nutrient contents and distribution
Gyroscope	Health care	Angular velocity	Detection of gait phases
Humidity sensor	PA & HM	Relative and absolute humidity	
Infrasonic sensor	AVM	Concussive acoustic waves - earth quake or volcanic eruption	
Magnetic sensor	Transportation	Presence, intensity, direction, rotation and variation of a magnetic field	Presence, speed and density of a vehicle on a street; congestion
Oximeter	Health care	Blood oxygenation of patient's hemoglobin	Cardiovascular exertion and trending of exertion relative to activity
pH sensor	Pipeline (water)	Concentration of hydrogen ions	Indicates the acid and alkaline content of a water measure of cleanliness

Sensor	Application Area	Sensed Event	Explanation
Photo acoustic spectroscopy	Pipeline	Gas sensing	Detects gas leak in a pipeline
Piezoelectric cylinder	Pipeline	Gas velocity	A leak produces a high frequen noise that produces a high frequency noise that produces vibration
Soil moisture sensor	PA	Soil moisture	Fertilizer and water manageme
Temperature sensor	PA & HM	Pressure exerted on a fluid	
Passive infrared sensor	Health care & HM	Infrared radiation from objects	Motion detection
Seismic sensor	AVM	Measure primary and secondary seismic waves (Body wave, ambient vibration)	Detection of earth quake
Oxygen sensor	Health care	Amount and proportion of oxygen in the blood	
Blood flow sensor	Health care	The Doppler shift of a reflected ultrasonic wave in the blood	

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

		_

Outline	
The Sensing Subsystem	
 Analog-to-Digital Converter 	
The Processor Subsystem	
Architectural Overview	
 Microcontroller 	
 Digital Signal Processor 	
 Application-specific Integrated Circuit 	
 Field Programmable Gate Array 	
 Comparison 	
Communication Interfaces	
 Serial Peripheral Interface 	
Inter-Integrated Circuit	
 Summary 	
Prototypes	
The IMote Node Architecture	
The XYZ Node Architecture	
The Hogthrob Node Architecture	
Fundamentals of Wireless Sensor Networks: Theory and Practice	13

Von Neumann Architecture

Von Neumann architecture

- provides a single memory space storing program instructions and data
- provides a *single bus* to transfer data between the processor and the memory
- Slow processing speed each data transfer requires a separate clock

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Harvard Architecture

Harvard architecture

- provides *separate memory spaces* storing program instructions and data
- each memory space is interfaced with the processor with a separate data bus
- program instructions and data can be accessed at the same time
- a special *single instruction, multiple data (SIMD)* operation, a special arithmetic operation and a bit reverse
- supports multi-tasking operating systems; but does not provide virtual memory protection

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

- Super-Harvard architecture (best known: SHARC)
 - an extension of the Harvard architecture
 - adds two components to the Harvard architecture:
 - internal instruction cache temporarily store frequently used
 instructions enhances performance
 - an underutilized program memory can be used as a temporary relocation place for data
 - Direct Memory Access (DMA)
 - costly CPU cycles can be invested in a different task
 - program memory bus and data memory bus accessible from outside the chip

19

Microcontroller

Structure of microcontroller

- integrates the following components:CPU core
 - volatile memory (RAM) for data storage
 - ROM, EPROM, EEPROM, or Flash memory
 - parallel I/O interfaces
 - discrete input and output bits
 - clock generator
 - CIUCK Generator
 - one or more internal analog-to-digital converters
 - serial communications interfaces

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Microcontroller

Advantages:

- suitable for building computationally less intensive, standalone applications, because of its *compact construction*, *small size*, *low-power consumption*, and *low cost*
- high speed of the programming and eases debugging, because of the use of higher-level programming languages
- Disadvantages:
 - not as powerful and as efficient as some custom-made processors (such as DSPs and FPGAs)
 - some applications (simple sensing tasks but large scale deployments) may prefer to use architecturally simple but energy- and cost-efficient processors

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Digital Signal Processor

- The main function:
 - process discrete signals with digital filters
 - filters minimize the effect of noise on a signal or enhance or modify the spectral characteristics of a signal
 - while analog signal processing requires complex hardware components, digital signal processors (DSP) requires simple adders, multipliers, and delay circuits
 - DSPs are highly efficient
 - most DSPs are designed with the Harvard Architecture

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Digital Signal Processor

Advantages:

- powerful and complex digital filters can be realized with commonplace DSPs
- useful for applications that require the deployment of nodes in harsh physical settings (where the signal transmission suffers corruption due to noise and interference and, hence, requires aggressive signal processing)
- Disadvantage:
 - some tasks require protocols (and not numerical operations) that require periodical upgrades or modifications (i.e., the networks should support flexibility in network reprogramming)

Tł	ne Sensing Subsystem	
	Analog-to-Digital Converter	
Th	ne Processor Subsystem	
	Architectural Overview	
	Microcontroller	
	Digital Signal Processor	
•	Application-specific Integrated Circuit	
	Field Programmable Gate Array	
	Comparison	
C	ommunication Interfaces	
	Serial Peripheral Interface	
•	Inter-Integrated Circuit	
•	Summary	
Pr	ototypes	
	The IMote Node Architecture	
	The XYZ Node Architecture	
	The Hogthrob Node Architecture	

Application-specific Integrated Circuit

- ASIC is an *IC* that can be customized for a specific application
- Two types of design approaches: full-customized and half-customized
 - full-customized IC:
 - some logic cells, circuits, or layout are custom made in order to optimize cell performance
 - includes features which are not defined by the standard cell library
 - expensive and long design time
 - half-customized ASICs are built with logic cells that are available in the standard library
 - in both cases, the final logic structure is configured by the end user an ASIC is a *cost efficient solution, flexible,* and *reusable*

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Application-specific Integrated Circuit

Advantages:

- relatively *simple design*; can be optimized to *meet a specific customer demand*
- multiple microprocessor cores and embedded software can be designed in a single cell
- Disadvantage:
 - high development costs and lack of re-configurability
- Application:
 - ASICs are not meant to replace microcontrollers or DSPs but to complement them
 - handle rudimentary and low-level tasks
 - to decouple these tasks from the main processing subsystem

Outline	
The Sensing Subsystem	
Analog-to-Digital Converter	
The Processor Subsystem	
Architectural Overview	
 Microcontroller 	
 Digital Signal Processor 	
 Application-specific Integrated Circuit 	
Field Programmable Gate Array	
 Comparison 	
Communication Interfaces	
Serial Peripheral Interface	
Inter-Integrated Circuit	
 Summary 	
Prototypes	
The IMote Node Architecture	
The XYZ Node Architecture	
The Hogthrob Node Architecture	
Fundamentals of Wireless Sensor Networks: Theory and Practice	30

Field Programmable Gate Array (FPGA)

- The distinction between ASICs and FPGAs is not always clear
 - FPGAs are more complex in design and more flexible to program
 - FPGAs are programmed electrically, by modifying a packaged part
 - programming is done with the support of circuit diagrams and hardware description languages, such as VHDL and Verilog

31

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Field Programmable Gate Array (FPGA)

Advantages:

- higher bandwidth compared to DSPs
- *flexible* in their application
- support parallel processing
- work with floating point representation
- greater *flexibility of control*
- Disadvantages:
 - complex
 - the design and realization process is costly

Comparison

- Working with a micro-controller is preferred if the design goal is to achieve flexibility
- Working with the other mentioned options is preferred if power consumption and computational efficiency is desired
- DSPs are expensive, large in size and less flexible; they are best for signal processing, with specific algorithms
- FPGAs are faster than both microcontrollers and digital signal processors and support parallel computing; but their production cost and the programming difficulty make them less suitable

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

<text><text><page-footer>

Communication Interfaces

- Fast and energy efficient data transfer between the subsystems of a wireless sensor node is vital
 - however, the practical size of the node puts restriction on system buses
 - communication via a parallel bus is *faster* than a serial transmission
 - a parallel bus needs more space
- Therefore, considering the size of the node, parallel buses are never supported

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Communication Interfaces The choice is often between serial interfaces : Serial Peripheral Interface (SPI) General Purpose Input/Output (GPIO) Secure Data Input/Output (SDIO) Inter-Integrated Circuit (I²C) Among these, the most commonly used buses are SPI and PC

Serial Peripheral Interface

- SPI (Motorola, in the mid-80s)
 - high-speed, full-duplex synchronous serial bus
 - does not have an official standard, but use of the SPI interface should conform to the implementation specification of others correct communication
- The SPI bus defines four pins:
 - MOSI (MasterOut/SlaveIn)
 - used to transmit data from the master to the slave when a device is configured as a master
 - MISO (MasterIn/SlaveOut)
 - SCLK (Serial Clock)
 - used by the master to send the clock signal that is needed to synchronize transmission
 - used by the *slave* to read this signal synchronize transmission
 - CS (Chip Select) communicate via the CS port
- Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Serial Peripheral Interface

- Both master and slave devices hold a shift register
- Every device in every transmission must read and send data
- SPI supports a *synchronous communication protocol*
 - the master and the slave must agree on the timing
 - master and slave should agree on two additional parameters
 - clock polarity (CPOL) defines whether a clock is used as high- or low-active
 - clock phase (CPHA) determines the times when the data in the registers is allowed to change and when the written data can be read

41

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Serial Peripheral Interface

SPI Mode	CPOL	CPHA	Description
0	0	0	SCLK is low-active. Sampling is allowed on odd clock edges Data changes on even clock edges.
1	0	1	SCLK is low-active. Sampling is allowed on even clock edge Data changes on odd clock edges.
2	1	0	SCLK is high-active. Sampling is allowed on odd clock edges Data changes on even clock edges.
3	1	1	SCLK is high-active. Sampling is allowed on even clock edge Data changes on odd clock edges

Inter-Integrated Circuit

- Since each master generates its own clock signal, communicating devices must synchronize their clock speeds
 - a slower slave device could wrongly detect its address on the SDA line while a faster master device is sending data to a third device
- I²C requires arbitration between master devices wanting to send or receive data at the same time
 - *no* fair arbitration *algorithm*
 - rather the master that holds the SDA line low for the longest time wins the medium

Inter-Integrated Circuit

- I²C enables a device to read data at a byte level for a fast communication
 - the device can hold the SCL low until it completes reading or sending the next byte called *handshaking*
- The aim of I²C is to minimize costs for connecting devices
 - accommodating lower transmission speeds
- I²C defines two speed modes:
 - *a fast-mode* a bit rate of up to 400Kbps
 - high-speed mode a transmission rate of up to 3.4 Mbps
 - they are downwards compatible to ensure communication with older components

SPI	12,
4 lines enable full-duplex transmission	2 lines reduce space and simplify circuit layout Lowers costs
No addressing is required due to CS	Addressing enables multi-master mode; Arbitratio required
Allowing only one master avoids conflicts	Multi-master mode is prone to conflicts
Hardware requirement support increases with an increasing number of connected devices — costly	Hardware requirement is independent of the numbe devices using the bus
The master's clock is configured according to the slave's speed but speed adaptation slows down the master.	Slower devices may stretch the clock - latency keeping other devices waiting
Speed depends on the maximum speed of the slowest device	Speed is limited to 3.4 MHz
Heterogeneous registers size allows flexibility in the devices that are supported.	Homogeneous register size reduces overhead
Combined registers imply every transmission should be read AND write	Devices that do not read or provide data are not forced to provide potentially useless bytes
The absence of an official standard leads to application specific implementations	Official standard eases integration of devices s developers can rely on a certain implementation

Outline	
The Sensing Subsystem	
 Analog-to-Digital Converter 	
The Processor Subsystem	
 Architectural Overview 	
 Microcontroller 	
 Digital Signal Processor 	
 Application-specific Integrated Circuit 	
 Field Programmable Gate Array 	
 Comparison 	
Communication Interfaces	
 Serial Peripheral Interface 	
Inter-Integrated Circuit	
Summary	
Prototypes	
The IMote Node Architecture	
The XYZ Node Architecture	
The Hogthrob Node Architecture	
Fundamentals of Wireless Sensor Networks: Theory and Practice Walteneous Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.	48

Communication Interfaces - Summary

- Buses are essential highways to transfer data
 - due to the concern for size, only serial buses can be used
 serial buses demand high clock speeds to gain the same
 - throughput as parallel buses
 - serial buses can also be bottlenecks (e.g., Von Neumann architecture) or may not scale well with processor speed (e.g., I²C)
- Delays due to contention for bus access become critical, for example, if some of the devices act unfairly and keep the bus occupied

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

The IMote Node Architecture

- The processing subsystem provides
 - main processor (microprocessor)
 - operates in low voltage (0.85V) and low frequency (13MHz) mode
 - Dynamic Voltage Scaling (104MHz 416MHz)
 - sleep and deep sleep modes
 - thus enabling low power operation
 - coprocessor (a DSP)
 - accelerates multimedia operations computation intensive

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

The XYZ Node Architecture • Consists of the four subsystems: • power subsystem • communication subsystem • mobility subsystem • sensor subsystem

The XYZ Node Architecture

- The processor subsystem is based on the ARM7TDMI core microcontroller
 - f_{max} = 58MHz
 - two different modes (32bits and 16bits)
 - provides an on-chip memory of 4KB boot ROM and a 32KB RAM
 can be extended by up to 512KB of flash memory
- Peripheral components:
 - DMA controller
 - fopur 10-bit ADC inputs
 - serial ports (RS232, SPI, I²C, SIO)
 - 42 multiplexed general purpose I/O pins

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

The XYZ Node Architecture

• The communication subsystem is connected to the processing subsystem through a SPI interface

- CC2420 RF transceiver
- when an RF message has been successfully received, the SPI interface enables the radio to wake up a sleeping processor
- the processor subsystem controls the communication subsystem by either *turning it off* or putting it in *sleep mode*

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

The Hogthrob Node Architecture

- Designed for a specific application, namely, to monitor pig production
- Motivation:
 - monitors movements of a sow to predict onset of estrus
 - so that appropriate care can be given for pregnant sows
 - detecting cough or limping to monitor illness

The Hogthrob Node Architecture

• The processing subsystems consists of :

microcontroller

- performs less complex, less energy intensive tasks
- initializes the FPGA and functions as an external timer and an ADC converter to it
- Field Programmable Gate Array
 executes the sow monitoring application
 - coordinates the functions of the sensor node

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

The Hogthrob Node Architecture There are a number of interfaces supported by the processing subsystem, including the I²C interface for the sensing subsystem the SPI interface for the communication subsystem the JTAG interface for in-system programmability and debugging the serial (RS232) interface for interaction with a PC